Как научиться перемножать большие числа и зачем вам это нужно

Крупный счёт прокачает решение бытовых вопросов

Как любому компьютеру нужно расширять оперативную

Как любому компьютеру нужно расширять оперативную память, так и нашему мозгу нужен отсек для быстрых операций.

Тренировки с умножением укрепят краткосрочную память. Вы перестанете забывать, закрыли ли дверь на ключ, сколько яиц лежало в холодильнике перед походом в магазин и о чём вели речь после того, как отвлеклись.

Не говоря о том, что будете мгновенно считать, во сколько обойдётся вон тот сочный кусок мяса на шашлык или заправка автомобиля, чтобы доехать до соседнего города.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Видео

a плюс b в квадрате

Может быть, вы помните (а может, и нет) знаменитую формулу для вычисления (a + b) в квадрате:

a-квадрат-плюс-два-ab-плюс-b-квадрат

Мы написали эту формулу на рисунке. У кого-то она вызовет легкую ностальгию, у кого-то — давно забытое, но знакомое смятение.

Задание: Получите сами формулу для вычисления (a +

Задание: Получите сами формулу для вычисления (a + b)². У нас для этого уже все есть! Вспомните, что (a + b) — это всего лишь число. А квадрат — это число, умноженное на само себя! То есть (a + b)² = (a + b)(a + b). Получив формулу, проверьте ее на числах. Удачи!

Надеемся, вы увидели связь этой формулы с предыдущей. Это в точности то же самое, что (a + b)(a + b), но только скобки одинаковые. Заметим, что когда мы перемножаем букву саму на себя, например, a × a, то знак умножения упускать не принято. На письме aa смотрится как-то некрасиво и неуместно, как крик о помощи или заикание. Принято писать a × a или a². Давайте попробуем применить эту формулу. Вот что получилось:

(a + b)² = (a + b)(a + b) = a × a + ab + ba + b × b.

Что тут можно заметить? Во-первых, a × a — это a², а b × b — это b². Кроме того, ab и ba — это одно и то же, потому что буквы просто обозначают числа, и перемножать их можно в любом порядке. Тогда ab + ba = ab + ab = 2ab. В результате выходит:

(a + b)² = (a + b)(a + b) = a × a + ab + ba + b × b = a² + 2ab + b².

То, что слева, равно тому, что справа, то есть:

(a + b)² = a² + 2ab + b².

Что и требовалось доказать.

Естественно, геометрическая интерпретация через площади по-прежнему в силе. Мы приводим рисунок ниже, но сначала попробуйте выполнить задание сами!

Задание: Объясните формулу (a + b)² = a² + 2ab + b² с помощью площадей. Удачи!

Если у вас получилось выполнить это задание, то можете снять видео и выложить его на «Ютьюбе». Как вы думаете, сколько просмотров оно наберет? Не стоит недооценивать интерес людей к раскрытию скобок. В 2012 году тридцатисекундное видео учителя математики из Индии Кхуршеда Батливалы про (a + b)² взорвало Интернет, собрав более миллиона просмотров! И это всего лишь визуализация того, как раскрыть скобки с помощью площадей.

Давайте попробуем повторить успех Батливалы. Нарисуем горизонтальную линию, состоящую из двух отрезков — a и b.

Так как в формуле мы возводим a и b в квадрат, то 

Так как в формуле мы возводим a и b в квадрат, то и рисуем квадрат — проводим вертикальную линию, также состоящую из отрезков — a и b (помните, что у квадрата все стороны равны?), и достраиваем чертеж до нужной нам фигуры. Площадь такого квадрата равна (a + b)(a + b), или (a + b)².

А теперь разделим квадрат изнутри на 4 части, соед

А теперь разделим квадрат изнутри на 4 части, соединив между собой противоположные стороны.

Из чего состоит эта площадь? a² и b² — это площади

Из чего состоит эта площадь? a² и b² — это площади внутренних заштрихованных квадратов. Осталось два одинаковых внутренних прямоугольника, у каждого из которых площадь равна ab. Сложим четыре площади вместе и получим a × a + ab + ab + b × b. Узнаете? Это же та же формула, a² + 2ab + b²!

Если вам, как и Алле, непросто раскрывать скобки, то по картинке всегда можно вспомнить формулу или даже вывести ее заново! К этому волшебному квадрату мы еще не раз вернемся. Именно он позволит нам добраться до самых глубоких корней квадратного уравнения и доказать теорему Пифагора.

Ну и наконец, подставим числа. Давайте a примем за 4, а b — за 3. Тогда (4 + 3)² = 7² = 7 × 7 = 49. А по формуле (4 + 3)² = 42 + 2 × 4 × 3 + 32 = 16 + 24 + 9 = 49. Красота!

Как умножить тысячи на однозначное число

Чтобы получить ответ на, допустим, пример 3864∙7,

Чтобы получить ответ на, допустим, пример 3864∙7, вам поможет система Разбить-умножить, разбить-сложить.

Так выглядит алгоритм:

1. Разбиваем большое число на единицы, десятки, сотни и так далее.

3864 = 3000 + 800 + 60 + 4

2. Умножаем каждый кусочек на второе число.

3000∙7 = 21000 | 800∙7 = 5600 | 60∙7 = 420 | 4∙7 = 28

3. Разбиваем результаты на простые группы одного размера.

21000 = 20000+1000 | 5600=5000+600 | 420 = 400+20 | 28 = 20+8

20000 | 1000+5000 | 600+400 | 20+20 | 8

4. Складываем группы с конца.

20000 + 1000+5000 + 600+400 + 20+20 + 8

20000 + 6000 + 1000 + 40 + 8

27048

Хотя на бумаге способ получается долгим, через несколько дней тренировка даст заметные результаты в скорости. У вас улучшится краткосрочная память, и вместимость чисел для сложения постепенно увеличится.

Важнее всего не потерять куски при последнем сложении. Этот этап доведёте до автомата постоянной практикой.

Отличие метода от привычного столбика в том, что мы постоянно дробим элементы на лёгкие частицы, которые быстро складываются.

Быстрое умножение в уме больших чисел

Математики всех времен искали простые методы быстрого устного счета. Умножение и деление, в отличие от сложения и вычитания, являются более сложными операциями. Поэтому производить такие подсчеты в уме без должной подготовки сложно, тем более когда речь идет о многозначных числах. Проблема устного умножения в том, что не существует какого-либо универсального способа, который бы подходил вне зависимости от ситуации.

Мозг обычного человека не способен работать также быстро, как калькулятор. Мы склонны терять концентрацию, сбиваться, забывать результаты промежуточных операций. Поэтому стандартные способы устного умножения мало пригодны для повседневных задач. Они скорее являются хорошей разминкой для мозга, чем удобным инструментом. Но что делать, если быстро считать без подручных средств все же хочется?

Благодаря интернету можно найти немало информации по этому вопросу. Сегодня существует множество методик, позволяющих научиться складывать, вычитать, умножать и даже делить с моментальной скоростью. Но самым популярным направлением устного счета является ментальная арифметика. Ее неоспоримым плюсом является то, что она дается детям даже легче, чем взрослым.

Как научиться умножать в уме

Лайфхакер уже писал о том, как быстро освоить таблицу умножения.

Добавим, что наибольшие трудности и у детей, и у взрослых вызывает умножение 7 на 8. Есть простое правило, которое поможет вам никогда не ошибаться в этом вопросе. Просто запомните: «пять, шесть, семь, восемь» — 56 = 7 × 8.

А теперь перейдём к более сложным случаям.

Умножаем однозначные числа на многозначные

По сути, здесь всё элементарно. Разбиваем многозначное число на разряды, перемножаем каждый на однозначное число и суммируем результаты.

Разберём на конкретном примере: 759 × 8.

  • Разбиваем 759 на разрядные части: 700, 50 и 9.
  • Умножаем каждый разряд по отдельности: 700 × 8 = 5 600, 50 × 8 = 400, 9 × 8 = 72.
  • Складываем результаты, разбивая их на разряды: 5 600 + 400 + 72 = 5 000 + (600 + 400) + 72 = 5 000 + 1 000 + 72 = 6 000 + 72 = 6 072.

Умножаем двузначные числа

Тут уже рука сама тянется к калькулятору или хотя бы к бумаге и ручке, чтобы воспользоваться старым добрым умножением в столбик. Хотя ничего сверхсложного в этой операции нет. Просто нужно немного потренировать краткосрочную память.

Попробуем умножить 47 на 32, разбив процесс на несколько шагов.

  • 47 × 32 — это то же, что и 47 × (30 + 2) или 47 × 30 + 47 × 2.
  • Сначала умножим 47 на 30. Проще некуда: 47 × 3 = 40 × 3 + 7 × 3 = 120 + 21 = 141. Приписываем справа нолик и получаем: 1 410.
  • Поехали дальше: 47 × 2 = 40 × 2 + 7 × 2 = 80 + 14 = 94.
  • Осталось сложить результаты: 1 410 + 94 = 1 500 + 4 = 1 504.

Этот принцип можно применять и к числам с большим количеством разрядов, но удержать в уме столько операций не каждому под силу.

Умножение однозначных чисел

Однозначные числа умножаются легко. Достаточно знать таблицу умножения. Примеры:

5 × 5 = 25

3 × 5 = 15

7 × 6 = 42

5 × 8 = 40

Если по каким-либо причинам не удаётся вспомнить таблицу умножения, то можно воспользоваться сложением. Ведь умножение это ни что иное как многократное сложение.

Чтобы умножить, например, число 4 на число 3, нужно число 4 сложить три раза:

Второй способ арифметические подгонки

Приведение примера к удобному виду является достаточно распространенным способом счета в уме. Подгонять пример удобно, когда вам нужно быстро найти примерный или точный ответ. Желание подгонять примеры под определенные математические закономерности часто воспитывается на математических кафедрах в университетах или в школах в классах с математическим уклоном. Людей учат находить простые и удобные алгоритмы решения различных задач. Вот некоторые примеры подгонки:

Произведение 56*92 решается так: 56*100-56*2*2*2. Пример 49*49 может решаться так: (49*100)/2-49. Сначала считается 49 на сто – 4900. Затем 4900 делится на 2, что равняется 2450, затем вычитается 49. Итого 2401.

Произведение 56*92 решается так: 56*100-56*2*2*2. Получается: 56*2= 112*2=224*2=448. Из 5600 вычитаем 448, получаем 5152.

Этот способ может оказаться эффективнее предыдущего только в случае, если вы владеете устным счетом на базе перемножения двузначных чисел на однозначные и можете держать в уме одновременно несколько результатов. К тому же приходится тратить время на поиск алгоритма решения, а также уходит много внимания за правильным соблюдением этого алгоритма.

Вывод. Способ, когда вы стараетесь умножить 2 числа, раскладывая их на более простые арифметические процедуры, отлично тренирует ваши мозги, но связан с большими мысленными затратами, а риск получить неправильный результат выше, чем при первом методе.

Умножение многозначных чисел на многозначные

Умножение многозначных чисел на многозначные происходит таким же образом, как и умножение многозначных на однозначные. Каждая цифра многозначного числа умножается на каждую цифру другого многозначного числа. Единственное отличие заключается в том, что в конце образуется своего рода лесенка ответов, которые надо сложить. Рассмотрим несколько примеров, чтобы хорошо понять это.

Пример 1. Найти значение выражения 12 × 14

Записываем данное выражение в столбик — единицы под единицами, десятки десятками:Теперь умножаем каждую цифру числа 12 на каждую ци

Теперь умножаем каждую цифру числа 12 на каждую цифру числа 14. Делать это надо по-очереди, начав с четвёрки. В результате таких действий мы приходим к умножению многозначного числа на однозначное, которое проходили ранее:

Умножив 12 на 4, мы получили число 48, которое зап

Умножив 12 на 4, мы получили число 48, которое записали таким образом, чтобы разряд единиц этого числа оказался под четверкой, на которую мы умножали число 12.

Теперь умножаем 12 на 1:

Умножив 12 на 1 мы получили число 12 и записали ег

Умножив 12 на 1 мы получили число 12 и записали его таким образом, чтобы разряд единиц этого числа оказался под единицей, на которую мы умножали число 12.

Мы получили лесенку ответов 48 и 12, которую надо сложить. Складываем и получаем ответ 168

В данном примере множитель 14 это четыре единицы и

В данном примере множитель 14 это четыре единицы и один десяток. Тогда умножение 12 на 14 можно понимать как увеличение числа 12 в четыре раза и в десять раз. Этим и объясняется появление лесенки в конце решения. Давайте посмотрим как это выглядит на каждом этапе:

Увеличим число 12 в четыре раза, получим число 48

Увеличим число 12 в десять раз, получим число 120.

Увеличим число 12 в десять раз, получим число 120. Записываем 120 так, чтобы можно было сложить единицы этого числа с единицами числа 48, а десятки числа 120 можно было сложить с десятками числа 48

Теперь сложим получившуюся лесенку ответов. Единиц

Теперь сложим получившуюся лесенку ответов. Единицы сложим с единицами, десятки с десятками, сотни с сотнями. В результате образуется окончательный ответ:

Но чаще всего множитель не группируется с помощью

Но чаще всего множитель не группируется с помощью разрядов, и умножение выполняют, умножая каждую цифру множимого на каждую цифру множителя.

Пример 2. Найти значение выражения 25 × 36

Записываем данное выражение в столбик

Умножаем каждую цифру числа 25 на каждую цифру чис

Умножаем каждую цифру числа 25 на каждую цифру числа 36.

Умножим 25 на 6:

Умножаем 25 на 3:

Умножаем 25 на 3:

Теперь сложим получившуюся лесенку:

Теперь сложим получившуюся лесенку:

Получили ответ 900.

Получили ответ 900.

Рассмотрим большой и сложный пример на умножение: 12305 × 5641. Будем придерживаться ранее изученных правил.

Сначала записываем в столбик данное выражение

Теперь начинаем умножать. Число 12305 надо умножить на каждую цифру числа 5641.

Умножив 12305 на 1, мы получили 12305 и записали э

Умножив 12305 на 1, мы получили 12305 и записали это число так, чтобы разряд единиц этого числа оказался под единицей, на которую мы умножили 12305.

Теперь умножаем 12305 на следующую цифру 4:

Умножаем 12305 на следующую цифру 6:Умножив 12305 на 4, мы получили 49220 и записали это число так, чтобы разряд единиц этого числа оказался под четверкой, на которую умножали 12305.

Умножаем 12305 на следующую цифру 6:

Умножив 12305 на 6, мы получили 73830 и записали э

Умножив 12305 на 6, мы получили 73830 и записали это число так, чтобы разряд единиц этого числа оказался под шестёркой, на которую мы умножали 12305.

Теперь умножаем 12305 на последнюю цифру 5:

Умножив 12305 на 5, мы получили 61525 и записали э

Умножив 12305 на 5, мы получили 61525 и записали это число так, чтобы разряд единиц этого числа оказался под пятёркой, на которую умножали 12305.

В результате мы получили большую лесенку, которую надо сложить. Складываем:

Получили окончательный ответ 69412505.

Получили окончательный ответ 69412505.

Если вы поняли этот пример, то можно сказать, что умножение больших чисел вы усвоили на отлично.

На этом урок по умножению можно завершить. Обязательно потренируйтесь, решив несколько примеров, которые даны ниже.

Важно отметить, что все эти стрелки и подробные решения, как на картинках в «боевых условиях» рисовать не принято. Нужно уметь сразу записывать ответы, выполняя в уме все вычисления.

Исключением является то, если человек давно не занимался математикой или никогда ею не занимался. В таком случае можно рисовать для себя стрелки и другие вспомогательные схемы для хорошего усвоения материала.

Одиннадцать друзей умножения

Самый простой и интересный способ умножения двузначного числа — с использованием числа 11. Нужно всего лишь сложить между собой цифры, из которых состоит двузначное число. А по бокам поставить те же самые исходные 2 числа, которые мы складывали. Что получится, если 35 умножить на 11? Складываем 3 + 5 = 8, а по бокам ставим 3 и 5 — 385. Проверяем на калькуляторе. Но что делать, если сумма двух этих чисел больше 10? Куда что ставить? Нужно сделать все ровно так же, только при помощи наложения. Посмотрим на примере 83*11: 8 + 3 = 11. Посередине у нас стоит 11, справа 3, а к первому месту прибавляется 8, итого: 8 + 1 = 9 — это первое число. Далее у нас стояла единица, последней тройка. Собираем: 913. Проверяем. Вуаля!

Теги

Adblock
detector