Как посчитать стороны равнобедренного треугольника

Определение и формулы боковых сторон равнобедренного треугольника

ОПРЕДЕЛЕНИЕ

Треугольник называется равнобедренным, если две его стороны равны. Равные стороны называются боковыми сторонами, а третья – основанием треугольника.

Формулы, выражающие боковую сторону равнобедренног

Формулы, выражающие боковую сторону равнобедренного треугольника через основание и угол при основании

через высоту и угол при основании

через высоту и угол при основании

через основание и угол между боковыми сторонами

через основание и угол между боковыми сторонами

где a – боковая сторона,  – основание,  – угол при

где a – боковая сторона,   – основание,   – угол при основании,   – угол между боковыми сторонами.

Свойства равнобедренного треугольника:

1. В равнобедренном треугольнике углы при основании равны.

Рис. 2. Равнобедренный треугольник

Рис. 2. Равнобедренный треугольник

∠ BАC = ∠ BСA

2. Биссектрисы, медианы и высоты, проведённые из этих углов равны между собой.

Рис. 3. Равнобедренный треугольник

Рис. 3. Равнобедренный треугольник

АН1 = СН2 – высота, АМ1 = СМ2 – медиана, АL1 = СL2 – биссектриса, проведённые из  углов при основании

3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Рис. 4. Равнобедренный треугольник

Рис. 4. Равнобедренный треугольник

ВD – биссектриса, высота и медиана, проведенные к основанию – это один и тот же отрезок

4. Центры вписанной и описанной окружностей лежат на медиане (биссектрисе, высоте), проведенной к основанию равнобедренного треугольника.

Рис. 5. Равнобедренный треугольник

Рис. 5. Равнобедренный треугольник

R – радиус описанной окружности, r – радиус вписанной окружности

Видео

Как пользоваться признаками равнобедренного треугольника при решении задач

  • Если дан равнобедренный треугольный треугольник, смело проводи высоту, получай два прямоугольных треугольника и решай задачу уже про прямоугольный треугольник;
  • Если дано, что два угла равны, то треугольник точно равнобедренный и можно проводить высоту и ….( Дом, который построил Джек… 🙂 );
  • Если оказалось, что высота разделила сторону пополам, то треугольник – равнобедренный со всеми вытекающими бонусами;
  • Если оказалось, что высота разделила угол полам – тоже равнобедренный;
  • Если биссектриса разделила сторону пополам или медиана разделила угол, то это тоже бывает только в равнобедренном треугольнике.

Давай посмотрим, как это выглядит в задачах.

Что мы узнали?

Мы поговорили о том, что такое равнобедренный треугольник, выделили основные его свойства и поговорили о методах нахождения сторон равнобедренного треугольника. Также мы выделили в отдельности боковую сторону и рассказали, как просто и быстро определить значение боковой стороны равнобедренного треугольника.

Боковая сторона треугольника

Равнобедренный отличается от остальных фигур тем, что достаточно двух показателей, из которых хотя бы один должен быть стороной, чтобы решить весь треугольник.

Если известно основание и любой из углов, то найти боковую сторону совсем не сложно. Если опустить на основание высоту, которая совпадет с медианой и биссектрисой, то получится два малых равных между собой прямоугольных треугольника, в которых боковая сторона будет являться гипотенузой.

Рис. 3. Высота равнобедренного треугольника

Рис. 3. Высота равнобедренного треугольника

Сторону можно найти из тригонометрической функции синуса или косинуса. Выбор функции зависит от того, какой угол известен. Для этого понадобится один из катетов. Один из катетов является высотой и его найти не всегда возможно. Чаще всего используют катет, равный половине основания. А почему он равен половине основания?

Потому что основание делится проведенной высотой пополам, так как совпадает с медианой. Вторая боковая сторона равна найденной. К слову, такой стиль решения применяется практически во всех задачах с равнобедренными треугольниками, поэтому стоит его запомнить.

Тригонометрическую функцию известного угла можно определить по таблицам Брадиса. В этих таблицах рассчитаны значения для всех существующих целых и промежуточных углов.

Равнобедренный треугольник нельзя решить, если:

  • известны только 2 боковые стороны;
  • известны только углы;
  • известно только основание;
  • известна только величина любого из характеризующих отрезков: высоты, медианы, биссектрисы и т.д.

Во всех остальных случаях треугольник можно решить, даже если известна только площадь и один из углов. Зачем знать варианты, когда решение точно невозможно? Чтобы не попасть в ловушку не решаемых задач. Такие редко, но встречаются. Предоставляя их к решению, составители проверяют уровень знаний учеников о фигуре.

Доказательство равенства треугольников

Посмотри внимательно, у нас есть:

  • \( \displaystyle \underbrace{AB}_{гипотенуза \ в\ \Delta ABH}=\underbrace{BC}_{гипотенуза\ в\ \Delta СBH}\)
  • \( \displaystyle BH\text{ }=\text{ }BH\) (ещё говорят, \( \displaystyle BH\)— общая)

И, значит, \( \displaystyle AH\text{ }=\text{ }CH\)!

Почему? 

Да мы просто найдём и \( \displaystyle AH\), и \( \displaystyle CH\) из теоремы Пифагора (помня ещё при этом, что \( \displaystyle AB=BC\))\( \displaystyle AH=\sqrt{A{{B}^{2}}-B{{H}^{2}}}\)\( \displaystyle CH=\sqrt{B{{C}^{2}}-B{{H}^{2}}}\)

Удостоверились? Ну вот, теперь у нас\( \displaystyle \begin{array}{l}AB=BC\\BH=BH\\AH=CH\end{array}\)А уж по трём сторонам – самый легкий (третий) признак равенства треугольников.

Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.

Отметим на картинке все одинаковые элементы (углы и стороны).

Видишь, как интересно? Получилось, что:

  • В равнобедренном треугольнике углы при основании равны: \( \displaystyle \angle A=\angle C\);
  • Высота, проведенная к основанию \( \displaystyle (ВH)\), совпадает с медианой и биссектрисой
  • \( \displaystyle AH=CH\)
  • \( \displaystyle \angle 1=\angle 2\).

Вспоминаем тут, что медиана – линия, проведённая из вершины, которая делит сторону пополам, а биссектриса – делит угол.)

Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник.

Мы вывели, что у равнобедренного треугольника углы при основании равны, а высота, биссектриса и медиана, проведенные к основанию, совпадают.

И теперь возникает другой вопрос: а как узнать, равнобедренный ли треугольник?

То есть, как говорят математики, каковыпризнаки равнобедренного треугольника?

Формулы равнобедренного треугольника:

Пусть a – длина двух равных сторон равнобедренного треугольника, b – длина основания, h – высота (биссектриса, медиана) равнобедренного треугольника, проведенная к основанию, α – углы при основании, β – вершинный угол, R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 6, 7, 8).

Рис. 6. Равнобедренный треугольник

Рис. 6. Равнобедренный треугольник

Формулы длины основания (b):

,,

 ,

 . 

Формулы длины равных сторон (а):

 Формулы углов:.

Формулы углов:

Рис. 7. Равнобедренный треугольник

Рис. 7. Равнобедренный треугольник

,

.,

Формулы периметра (Р) равнобедренного треугольника.

Формулы периметра (Р) равнобедренного треугольника:

Рис. 8. Равнобедренный треугольник

Рис. 8. Равнобедренный треугольник

. ,

 . 

Формулы площади (S) равнобедренного треугольника:

,

.,

   .

Теги

Adblock
detector