Перевести десятичную дробь в обыкновенную. Онлайн калькулятор

Перевод десятичных дробей в обыкновенные дроби

Теперь пришло время рассмотреть обратный процесс перевода десятичной дроби в обыкновенную. Сформулируем правило перевода, которое включает три этапа. Как перевести десятичную дробь в обыкновенную?

Правило перевода десятичных дробей в обыкновенные дроби

В числитель записываем число из исходной десятичной дроби, отбросив запятую и все нули слева, если они есть. В знаменатель записываем единицу и за ней столько нулей, сколько цифр есть в исходной десятичной дроби после запятой. При необходимости сокращаем полученную обыкновенную дробь. 

Рассмотрим применение данного правила на примерах.

Пример 8. Перевод десятичных дробей в обыкновенные

Представим число 3,025 в виде обыкновенной дроби. В числитель записываем саму десятичную дробь, отбросив запятую: 3025. В знаменателе пишем единицу, а после нее три нуля — именно столько цифр содержится в исходной дроби после запятой: 30251000. Полученную дробь 30251000 можно сократить на 25, в результате чего мы получим: 30251000=12140.

Пример 9. Перевод десятичных дробей в обыкновенные

Переведем дробь ,0017 из десятичных в обыкновенные. В числителе запишем дробь ,0017, отбросив запятую и нули слева. Получится 17. В знаменатель записываем единицу, а после нее пишем четыре нуля: 1710000. Данная дробь несократима.

Если в десятичной дроби есть целая часть, то такую дробь можно сразу перевести в смешанное число. Как это сделать?

Сформулируем еще одно правило.

Правило перевода десятичных дробей в смешанные числа.

Число, стоящее в дроби до запятой, записываем как целая часть смешанного числа. В числителе  записываем число, стоящее в дроби после запятой, отбросив нули слева, если они есть. В знаменателе дробной части дописываем единицу и столько нулей, сколько цифр есть в дробной части после запятой.

Обратимся к примеру

Пример 10. Перевод десятичной дроби в смешанное число

Представим дробь 155,06005 в виде смешанного числа. Записываем число 155, как целую часть. В числителе записываем цифры после запятой, отбросив нуль.  В знаменателе записываем единицу и пять нулей Поучаем смешанное число: 1556005100000 Дробную часть можно сократить на 5. Сокращаем, и получаем финальный результат: 155,06005=155120120000

Перевод бесконечных периодических десятичных дробей в обыкновенные дроби

Разберем на примерах, как осуществлять перевод периодических десятичных дробей в обыкновенные. Прежде чем начать, уточним: любую периодическую десятичную дробь можно перевести в обыкновенную.

Самый простой случай — период дроби равен нулю. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби.

Пример 11. Перевод периодической десятичной дроби в обыкновенную

Обратим периодическую дробь 3,75(). Отбросив нули справа, получим конечную десятичную дробь 3,75. Обращая данную дробь в обыкновенную по алгоритму, разобранному в предыдущих пунктах, получаем: 3,75()=3,75=375100=154.

Как быть, если период дроби отличен от нуля? Периодическую часть следует рассматривать как сумму членов геометрический прогрессии, которая убывает. Поясним это на примере:

,(74)=,74+,0074+,000074+,00000074+..

Для суммы членов бесконечной убывающей геометрической прогрессии существует формула. Если первый член прогрессии равен b, а знаменатель q таков, что <q<1, то сумма равна b1-q.

Рассмотрим несколько примеров с применением данной формулы.

Пример 12. Перевод периодической десятичной дроби в обыкновенную

Пусть у нас есть периодическая дробь ,(8) и нам нужно перевести ее в обыкновенную. Запишем: ,(8)=,8+,08+,008+.. Здесь мы имеем бесконечную убывающую геометрическую прогрессию с первым членом ,8 и знаменателем ,1. Применим формулу: ,(8)=,8+,08+,008+..=,81-,1=,8,9=89 Это и есть искомая обыкновенная дробь.

Для закрепления материала рассмотрим еще один пример.

Пример 13. Перевод периодической десятичной дроби в обыкновенную

Обратим дробь ,43(18). Сначала записываем дробь в виде бесконечной суммы: ,43(18)=,43+(,0018+,000018+,00000018..) Рассмотрим слагаемые в скобках. Эту геометрическую прогрессию можно представить в следующем виде: ,0018+,000018+,00000018..=,00181-,01=,0018,99=189900. Полученное прибавляем к конечной дроби ,43=43100 и получаем результат: ,43(18)=43100+189900 После сложения данных дробей и сокращения получим окончательный ответ: ,43(18)=1944

В завершение данной статьи скажем, что непериодические бесконечный десятичные дроби нельзя перевести в вид обыкновенных дробей.

Всё ещё сложно? Наши эксперты помогут разобраться Все услуги

Примеры использования дробей в повседневной жизни

На первый взгляд обыкновенные дроби практически не используются в быту или на работе и трудно представить ситуацию, когда вам понадобится перевести десятичную дробь в обычную за пределами школьных задач. Рассмотрим пару примеров.

Работа

Итак, вы работаете в кондитерском магазине и продаете халву на развес. Для простоты реализации продукта вы разделяете халву на килограммовые брикеты, однако мало кто из покупателей готов приобрести целый килограмм. Поэтому вам приходится каждый раз разделять лакомство на кусочки. И если очередной покупатель попросит у вас 0,4 кг халвы, вы без проблем продадите ему нужную порцию.

0,4 = 4/10 = 2/5

Быт

К примеру, необходимо сделать 12 % раствор для покраски модели в нужный вам оттенок. Для этого нужно смешать краску и растворитель, но как правильно это сделать? 12 % — это десятичная дробь 0,12. Преобразовываем число в обыкновенную дробь и получаем:

0,12 = 12/100 = 3/25

Зная дроби, вы сможете правильно смешать компоненты и получить нужный цвет.

Видео

Более быстрый способ

В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:

  1. Посчитать, сколько цифр стоит после запятой. Например, у дроби 1,75 таких цифр две, а у 0,0025 — четыре. Обозначим это количество буквой $n$.
  2. Переписать исходное число в виде дроби вида $\frac{a}{{{10}^{n}}}$, где $a$ — это все цифры исходной дроби (без «стартовых» нулей слева, если они есть), а $n$ — то самое количество цифр после запятой, которое мы посчитали на первом шаге. Другими словами, необходимо разделить цифры исходной дроби на единицу с $n$ нулями.
  3. По возможности сократить полученную дробь.

Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:

\[0,64=\frac{64}{100}=\frac{16}{25}\]

Как видим, в дроби 0,64 после запятой стоит две цифры — 6 и 4. Поэтому $n=2$. Если убрать запятую и нули слева (в данном случае — всего один ноль), то получим число 64. Переходим ко второму шагу: ${{10}^{n}}={{10}^{2}}=100$, поэтому в знаменателе стоит именно сто. Ну а затем остаётся лишь сократить числитель и знаменатель.:)

Ещё один пример:

\[0,004=\frac{4}{1000}=\frac{1}{250}\]

Здесь всё чуть сложнее. Во-первых, цифр после запятой уже 3 штуки, т.е. $n=3$, поэтому делить придётся на ${{10}^{n}}={{10}^{3}}=1000$. Во-вторых, если убрать из десятичной записи запятую, то мы получим вот это: 0,004 → 0004. Вспомним, что нули слева надо убрать, поэтому по факту у нас число 4. Дальше всё просто: делим, сокращаем и получаем ответ.

Наконец, последний пример:

\[1,88=\frac{188}{100}=\frac{47}{25}=\frac{25+22}{25}=1\frac{22}{25}\]

Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.

Избавляемся от запятой

Самый простой алгоритм подразумевает умножение числа на 10 до тех пор, пока из числителя не исчезнет запятая. Такое преобразование осуществляется в три шага:

Шаг 1: Для начала десятичное число запишем в виде дроби «число/1», то есть мы получим 0,5/1; 0,25/1 и 1,375/1.

Шаг 2: После этого умножим числитель и знаменатель новых дробей до тех пор, пока из числителей не исчезнет запятая:

  • 0,5/1 = 5/10;
  • 0,25/1 = 2,5/10 = 25/100;
  • 1,375/1 = 13,75/10 = 137,5/100 = 1375/1000.

Шаг 3: Сокращаем полученные дроби до удобоваримого вида:

  • 5/10 = 1 × 5 / 2 × 5 = 1/2;
  • 25/100 = 1 × 25 / 4 × 25 = 1/4;
  • 1375/1000 = 11 × 125 / 8 × 125 = 11/8.

Число 1,375 пришлось три раза умножать на 10, что уже не очень удобно, а что нам придется делать в случае, если понадобится преобразовать число 0,000625? В этой ситуации используем следующий способ преобразования дробей.

Самое трудное (для тех, кому не все равно)

выразить 1,(6) в виде ОД.\( \frac{15}{9} \)Таким образом, \( \frac{15}{9} \)0,1(23)\( \frac{a}{b} \)\( \frac{a}{b} \)\( \frac{122}{990} \)\( \frac{61}{495} \)Значит\( \frac{61}{495} \)Важно! В этом примере пришлось умножить части уравнения не на 10, а на 1000, вычесть не х, а 10х. Это нужно для того, чтобы легче было искать разность периодов: из 123,(23) удобно вычитать 1,(23). Подходящие коэффициенты придется подбирать в каждом отдельном случае. Но общий ход решения остается постоянным.

Теги

Adblock
detector